Deep Learning for Skin Lesion Classification

نویسندگان

  • P. Mirunalini
  • Chandrabose Aravindan
  • Vignesh Gokul
  • S. M. Jaisakthi
چکیده

Melanoma, a malignant form of skin cancer is very threatening to life. Diagnosis of melanoma at an earlier stage is highly needed as it has a very high cure rate. Benign and malignant forms of skin cancer can be detected by analyzing the lesions present on the surface of the skin using dermoscopic images. In this work, an automated skin lesion detection system has been developed which learns the representation of the image using Google’s pretrained CNN model known as Inception-v3 [1]. After obtaining the representation vector for our input dermoscopic images we have trained two layer feed forward neural network to classify the images as malignant or benign. The system also classifies the images based on the cause of the cancer either due to melanocytic or non-melanocytic cells using a different neural network. These classification tasks are part of the challenge organized by International Skin Imaging Collaboration (ISIC) 2017. Our system learns to classify the images based on the model built using the training images given in the challenge and the experimental results were evaluated using validation and test sets. Our system has achieved an overall accuracy of 65.8% for the validation set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network

Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is v...

متن کامل

A Novel Multi-task Deep Learning Model for Skin Lesion Segmentation and Classification

In this study, a multi-task deep neural network is proposed for skin lesion analysis. The proposed multi-task learning model solves different tasks (e.g., lesion segmentation and two independent binary lesion classifications) at the same time by exploiting commonalities and differences across tasks. This results in improved learning efficiency and potential prediction accuracy for the task-spec...

متن کامل

Using Deep Learning Method for Classification: A Proposed Algorithm for the ISIC 2017 Skin Lesion Classification Challenge

Skin cancer, the most common human malignancy, is primarily diagnosed visually by physicians . Classification with an automated method like CNN [2, 3] shows potential for challenging tasks . By now, the deep convolutional neural networks are on par with human dermatologist . This abstract is dedicated on developing a Deep Learning method for ISIC [5] 2017 Skin Lesion Detection Competition hoste...

متن کامل

RECOD Titans at ISIC Challenge 2017

Our team has worked on melanoma classification since early 2014 [1], and has employed deep learning with transfer learning for that task since 2015 [2]. Recently, the community has started to move from traditional techniques towards deep learning, following the general trend of computer vision [3]. Deep learning poses a challenge for medical applications, due to the need of very large training ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.04364  شماره 

صفحات  -

تاریخ انتشار 2017